
Table of averages of arithmetic functions seen in the course.

Can you see a connection between the Dirichlet series Df (s) and the
Mean Value

∑
n≤x f(n) in the examples below?

Dirichlet Series
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ns Mean Value Result on
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∞∑
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Q2(n)
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∑
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)
∞∑
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∑
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∞∑
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∞∑
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∞∑
n=1
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ns
= ζ(s+1) ζ(s)

∑
n≤x
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n
= ζ(2)x+O(log x)

∞∑
n=1
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ns
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n≤x
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∞∑
n=1

d(n)

ns
= ζ2(s)

∑
n≤x

d(n) = x log x+O(x) .

∞∑
n=1

d3(n)

ns
= ζ3(s)

∑
n≤x

d3(n) =
1
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∞∑
n=1
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ns
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ns
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∞∑
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∑
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1

2ζ(2)
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∞∑
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ns
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(
x log2 x
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If the Dirichlet Series associated to an arithmetic function has a simple
pole at s = a, and this a is real and it is the largest such pole, then the
leading term in the Mean Value of the function will be of the form xa. In
most cases the pole occurs at a = 1. If the pole is of order r then there will be
r−1 factors of log x. The coefficient of the leading term is the residue of the
pole at a. When the pole arises from ζ(s) , the Riemann zeta function itself
has residue 1 and so the residue is the value of the other factors evaluated
at 1, divided by r! if there is a repeated pole. Why these results should be
is far beyond the scope of this course.

Extensions

In the notes, problem sheets and additional notes on the web site you will
find the following extensions of the above results:

• There exists a constant C1 such that∑
n≤x

2ω(n) =
1

ζ(2)
x log x+ C1x+O

(
x1/2 log x

)
.

• There exists a constant Dk such that∑
n≤x

d ∗ µk(n) =
1

ζ(k)
x log x+Dkx+O

(
x1/2

)
.

for k ≥ 3.

• There exist constants c1 and c2 such that

∑
n≤x

d
(
n2
)

=
1

2ζ(2)
x log2 x+ c1x log x+ c2x+O

(
x3/4 log x

)
.

• There exist constants e1 and e2 such that

∑
n≤x

d3(n) =
1

2
x log2 x+ e1x log x+ e2x+O

(
x2/3 log x

)
.

• For k ≥ 2 we have∑
n≤x

dk(n) = xPk−1 (log x) +O
(
x1−1/k logk−2 x

)
,

where Pd (y) is a polynomial of degree d in y.
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